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Abstract

Telomeres maintain genomic integrity in normal cells, and their progressive shortening during successive cell
divisions induces chromosomal instability. In the large majority of cancer cells, telomere length is maintained by
telomerase. Thus, telomere length and telomerase activity are crucial for cancer initiation and the survival of tumors.
Several pathways that regulate telomere length have been identified, and genome-scale studies have helped in
mapping genes that are involved in telomere length control. Additionally, genomic screening for recurrent human
telomerase gene hTERT promoter mutations and mutations in genes involved in the alternative lengthening of
telomeres pathway, such as ATRX and DAXX, has elucidated how these genomic changes contribute to the
activation of telomere maintenance mechanisms in cancer cells. Attempts have also been made to develop
telomere length- and telomerase-based diagnostic tools and anticancer therapeutics. Recent efforts have revealed
key aspects of telomerase assembly, intracellular trafficking and recruitment to telomeres for completing DNA
synthesis, which may provide novel targets for the development of anticancer agents. Here, we summarize
telomere organization and function and its role in oncogenesis. We also highlight genomic mutations that lead to
reactivation of telomerase, and mechanisms of telomerase reconstitution and trafficking that shed light on its
function in cancer initiation and tumor development. Additionally, recent advances in the clinical development of
telomerase inhibitors, as well as potential novel targets, will be summarized.
Background
Cancer is generally an age-related genetic disease, manifest-
ing only when normal cells accumulate genomic instability
over a period of time and acquire the capability of replica-
tive immortality. Telomere attrition during successive cell
divisions induces chromosomal instability and contributes
significantly to genomic rearrangements that can result in
tumorigenesis. Telomeres, repetitive (TTAGGG) DNA–
protein complexes at the ends of chromosomes, are crucial
for the survival of cancer cells. They are maintained by an
enzyme called telomerase in the vast majority of tumors.
The mechanisms underlying telomere length (TL) mainten-
ance and telomerase expression involve transcriptional,
post-transcriptional and epigenetic regulation, and in-depth
understanding of these mechanisms may provide novel
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biomarkers and targets for early detection of disease, deter-
mination of disease prognosis, and the development of
therapeutics [1].
Telomeres protect chromosome ends from fusion and

from being recognized as sites of DNA damage (Box 1).
Dysfunctional telomeres, arising by critical shortening of
telomeres in normal somatic cells during progressive cell
divisions, elicit DNA damage responses (DDRs) that trig-
ger cellular senescence. Cells that gain oncogenic changes
bypass senescence and continue to divide (extended life-
span period) until multiple critically shortened telomeres
initiate crisis (a period of complete replicative senescence,
chromosome end-to-end fusions, and extensive apop-
tosis). This leads to breakage–fusion–bridge cycles in
which two sister chromatids lacking telomeres fuse
together, forming a bridge with a chromatin connection.
During anaphase, the sister chromatids are drawn apart
owing to movement towards opposite poles, resulting in
the formation of uneven derivative chromosomes, leading
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Box 1. Major historical research milestones in telomere and telomerase biology

Telomeres: Discovered by American geneticist Hermann J. Muller working on Drosophila melanogaster in 1938. He observed that the

ends of irradiated chromosomes were resistant to mutagenic X-rays and did not undergo deletions or inversions due to the presence of

cap-like structures that he called “telomeres” [81].

A crucial role for telomeres in chromosomal integrity: Elucidated by Barbara McClintock in 1941. She described that rupture of the

chromosomes resulted in the formation of dicentric chromosomes due to fusion of their ends, and demonstrated that damaged ends of the

chromosomes could be restored [82].

Cellular immortality in culture: Alex Carrel, recipient of the 1912 Nobel Prize in physiology, working at the Rockefeller Institute

demonstrated that chick heart tissue culture cells can be maintained in long-term cultures by replenishing with fresh culture medium. He

hypothesized that the lifespan of cultured tissues could be extended indefinitely and that the tissues should intrinsically be able to maintain

permanent life in vitro under ideal culture conditions. Later, Carrel's associates showed a continuous culture of chick heart cells from 1912

to 1946, and the idea of cell immortality as an intrinsic property was widely accepted by the scientific community. However, it was then

discovered that the use of chick embryo extract to culture these cells was actually re-seeding fetal cells and thus the immortality reported by

the Carrel laboratory has been largely discounted.

The concept of normal cell immortality challenged: Leonard Hayflick, in 1961 at the Wistar Institute, demonstrated that normal

human fetal cells in culture could divide only 40 to 60 times, and after that they underwent aging at the cellular level (then called phase

III and now replicative senescence) [83].

End replication problem: In 1971, James Watson, the co-discoverer of the DNA double helix, suggested that there was an “end

replication problem” due to the mechanism governing semi-conservative DNA replication. Watson predicted, based on the asymmetry of

how linear duplex DNA is copied, that each cell division would result in the extreme termini of chromosomes being lost. This would be

incompatible with long-term maintenance of the genome owing to progressive chromosome shortening with each replication cycle,

eventually reaching a critical point leading to cell senescence or death. In addition, he postulated the existence of a protective mechanism

to prevent chromosomal shortening [84].

Hypothesis about cellular aging: Also in 1971, Alexsey Olovnikov, a Russian scientist, hypothesized that there could be a problem

with the ends of chromosomes. He postulated that progressive shortening of the telomere would eventually run into essential

genes, leading to cellular aging and perhaps contributing to human aging [85].

Tetrahymena thermophila telomeres tandem repeat sequences: In 1978, Elizabeth Blackburn and Joseph Gall carried out sequencing

experiments for the DNA of the Tetrahymena thermophila minichromosome and reported that telomeres contained 20–70 tandem copies

of a simple hexanucleotide with the sequence 5′-CCCCAA-3′ on one strand and 5′-TTGGGG-3′ on the complementary strand [86].

Telomerase: Blackburn and Carol Greider, at Berkeley in 1985, identified an enzymatic activity capable of extending telomeric sequences.

The enzyme was named terminal telomere transferase but is now known as telomerase [87]. Along with Jack W. Szostak they received the

2009 Nobel Prize for their discovery that telomeres are protected from progressive shortening by the enzyme telomerase.

Human telomerase: Gregg Morin, in 1989 at Yale University, was the first to report telomerase activity in crude HeLa cell extracts. He

also demonstrated that human telomeres consisted of the repeated sequence TTAGGG [88]. In 1994, Jerry Shay and colleagues showed

telomerase activity in ~90 % of human cancers and cell lines [89], and in 1998 the same team demonstrated that introduction of hTERT

(the catalytic protein reverse transcriptase component of telomerase) into normal human cells was sufficient to immortalize cells [90].
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to genomic instability. The period of crisis results in ex-
tensive cell death. However, certain rare cells escape crisis
and maintain stable but usually shortened telomere
lengths for continued cell growth, eventually progressing
to a malignant phenotype. Cancer cells achieve prolifera-
tive immortality by activating or upregulating the nor-
mally silent human TERT gene (hTERT) that encodes
telomerase, a protein with reverse transcriptase activity
that complexes with other proteins and a functional RNA
(encoded by hTR, also called hTERC) to make a ribonu-
cleoprotein enzyme complex. Rarely, another DNA
recombination mechanism termed alternative lengthening
of telomeres (ALT) reverses telomere attrition in order to
bypass senescence. Although hTERT is usually silenced in
almost all somatic cells, it is significantly expressed in
~90 % of human cancers. The details of the under-
lying mechanisms of hTERT activation are still being
elucidated, but they mainly include mutations in the
hTERT promoter, alterations in alternative splicing of
hTERT pre-mRNA, hTERT amplification, epigenetic
changes, and/or disruption of telomere position effect
(TPE) machinery [2].
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Recent reports have implicated two cancer-specific
hTERT promoter mutations (mainly C T transitions) in
the activation of telomerase in cancer cells [3, 4]. These
mutations, which are located either −124 base pairs (bp)
or −146 bp upstream from the TERT translation start site
[5, 6], have been found to be associated with increased
telomerase activity [7]. Therefore, molecular mechanisms
that regulate hTERT expression and telomerase assembly
have been subjected to intense investigation. Studies
using telomerase inhibition strategies have established
that robust hTERT inhibition can lead to progressive
telomere shortening and eventually cancer cell death.
Several approaches, including use of small-molecule
inhibitors, antisense oligonucleotides, immunotherapy, and
G-quadruplex stabilizers have been employed to inhibit tel-
omerase function [8]. Currently, many anti-telomerase
therapeutics are being evaluated in clinical trials against a
variety of cancer types. The following sections will cover re-
cent developments in the area of telomere and telomerase
biology, their implications for understanding mechanisms
underlying cancer and for the development of cancer ther-
apies, as well as outstanding questions for the field.

Telomeres: organization, function and association
with cancer
Recent studies have significantly contributed to our un-
derstanding of telomere organization in the nucleus, telo-
mere profiling for risk stratification, and the signaling
pathways that mediate modulation of telomere structural
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Fig. 1 Schematic representation of telomeric DNA and components of the
capping structure consisting of DNA and shelterin protein complexes. Telo
repeats of the double-stranded DNA sequence 5′-(TTAGGG)n-3′, followed b
(nt) long). The 3′ G-rich overhang facilitates telomeric DNA in forming a hig
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the DNA damage response surveillance machinery to distinguish telomere DNA
component proteins or factors to regulate gene transcrip-
tion [9]. Telomeres consist of a capping structure, which
is a specialized nucleoprotein structure consisting of DNA
and shelterin protein complexes. Telomeric DNA contains
a variable number of G-rich, non-coding, tandem repeats
(10–15 kilobases (kb) long in humans at birth) of double-
stranded DNA sequence, 5′-(TTAGGG)n-3′, followed by
a terminal 3′ G-rich single-stranded overhang (150–200
nucleotide long). The 3′ G-rich overhang facilitates telo-
meric DNA in forming a higher-order structure in which
the 3′ single-stranded overhang folds back and invades
the homologous double-stranded TTAGGG region, form-
ing a telomeric loop (T-loop) that provides 3′-end protec-
tion by sequestering it from recognition by the DDR
machinery [10]. The proteins associated with telomeres
are called the shelterin complex, which consists of three
core shelterin subunits, TRF1 and TRF2, which directly
recognize and bind duplex TTAGGG repeats, and POT1,
which recognizes and binds single-stranded TTAGGG
overhangs. These three proteins are interconnected by
three additional shelterin proteins, TIN2, TPP1 and RAP1,
forming a complex that enables DDR surveillance machin-
ery to distinguish telomere DNA from sites of genomic
DNA damage (Fig. 1). The shelterin complex performs
critical and distinct functions that ensure telomere stabil-
ity. For example, TRF2 is required for T-loop formation
and maintenance of ATM-mediated DDR suppression and
repression from non-homologous end joining [11]. TRF1
has a central role in controlling replication of telomeric
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DNA [12] while POT1 associates with TPP1 to bind the
single-stranded 3′ overhang and repress ATR-mediated
DDR by preventing the recruitment of replication protein
A (RPA) [13]. TIN2 is essential to the overall integrity of
the shelterin complex as it links the TPP1/POT1 heterodi-
mer to TRF1 and TRF2, and stabilizes TRF1 and TRF2 as-
sociations with telomeric DNA [14, 15]. RAP1 interacts
with TRF2 and improves its selective binding to telomeric
DNA [16].
Apart from DNA end protection, telomeres also perform

other important functions such as regulation of gene ex-
pression through transcriptional silencing of genes located
close to the telomeres, called TPE [17], or located at long
distances from telomeres, termed TPE over long distances
(TPE-OLD) [18]. The function of telomeres is tightly regu-
lated and depends on a minimal length of telomeric repeats
and the functionality of the associated shelterin protein
complexes. In addition, higher-order DNA conformations,
such as the T-loop and G-quadruplexes (G-rich four-
stranded non-helical structures) are thought to contribute
to normal telomere function. Moreover, telomeric chroma-
tin has an important role in telomere maintenance, signal-
ing and regulation of telomere function, but many of the
precise structures and molecular mechanisms of human
telomeric chromatin are not well understood. However,
telomeric regions contain telomeric repeat-containing
RNA (TERRA), a long non-coding RNA that is transcribed
from telomeric DNA by RNA polymerase II [19]. TERRA
has been implicated in telomerase regulation, organization
of heterochromatin at telomeres, regulation of gene expres-
sion, and in DDR triggered by dysfunctional telomeres
[19]. The mammalian cell lines harboring active ALT have
higher TERRA levels compared with telomerase-positive
cells [20]. However, the exact role of TERRA in activation
of the ALT mechanism is not clear [21].
TL is critically important in normal cells, and telomere

shortening can—in combination with other oncogenic
changes—promote genome instability, potentially stimu-
lating initiation of the early stages of cancer. In humans,
the distribution of TL among different chromosome
arms is heterogeneous. TL reduces at a rate of 50–
150 bp at each cell division in human somatic cells in
cell culture. Consequently, individual telomere shorten-
ing rates may be different in different cell lineages. The
time point at which any chromosome end will become
uncapped depends on the specific TL shortening rate in
each cell type or tissue. Thus, the shortest telomere is
critically important for cell viability and chromosomal
stability as it may be a sole contributor to the senescence
onset signal [22]. There are two critically important bar-
riers that prevent cell immortalization and ultimately
malignant transformation: replicative senescence and
crisis [23]. The period of cellular senescence, also known
as mortality stage 1 (M1), is characterized by inhibition
of cellular proliferation, probably due to the uncapping
of one or a few shortened telomeres. In the presence of
cancer-initiating changes, M1 can be bypassed, providing
an extended cell division period. However, during this
phase additional telomeres become very short and these
“marked” telomeres result in a new dysfunctional state,
termed crisis (or M2 crisis). M2 is a period in which sig-
nals to undergo replicative senescence and signals for
cells to continue to divide are balanced. This eventually
results in chromosome end-to-end fusions and extensive
cell death (apoptosis) [24]. However, a rare clone (1 in
100,000 to 1 in 10 million cells) can progress towards
the acquisition of cell immortality [25]. At this point, a
mechanism must be engaged to maintain these very
short telomeres, and this occurs by either increasing or
reactivating telomerase expression, or by acquiring a
much rarer telomerase-independent ALT mechanism,
thus bypassing crisis and ultimately leading to cell
immortalization [26] (Fig. 2).
Although telomerase maintains telomere length in the

majority of cancer cells, the ALT mechanism is also
employed by 10–15 % of tumors [27]. The ALT pathway
utilizes a homologous recombination-based DNA repli-
cation mechanism to extend telomere length. The acti-
vation of the ALT mechanism is thought to involve loss
of chromatin-remodeling factors such as ATRX and
DAXX, resulting in reduced compaction of telomeric
chromatin, which leads to the production of altered telo-
meric DNA sequences and activation of a telomere-
specific DDR pathway [28, 29], which in turn stimulates
homology-directed synthesis of telomeric DNA. Re-
cently, Flynn and colleagues [30] reported that inhibition
of the protein kinase ATR disrupts the ALT mechanism
in ALT-positive cancer cells, resulting in cell death. This
suggests that ATR inhibitors may be a useful therapeutic
intervention for ALT-harboring tumors.

Telomerase: the key telomere length maintenance
mechanism
Telomerase is a large ribonucleoprotein complex respon-
sible for progressive synthesis of telomeric DNA repeats
(TTAGGG) at the 3′ ends of linear chromosomes, thereby
reversing the loss of DNA from each round of replication.
Telomerase is a reverse transcriptase that consists of a
catalytic protein subunit called telomerase reverse tran-
scriptase (TERT), encoded by the hTERT gene in humans
that is positioned at chromosome 5p15.33, and an essen-
tial RNA component known as human telomerase RNA
(hTR) or human telomerase RNA component (hTERC),
encoded by the hTERC gene found on chromosomal
region 3q26. hTR acts as a template (carries sequence
complementary to one or more copies of telomeric re-
peats) for the synthesis of telomere DNA, and is also in-
volved in the catalysis, localization and assembly of the
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Fig. 2 Cellular senescence and crisis. Telomeres protect chromosome ends from undergoing fusions and recombination by masking telomeric
DNA with shelterin protein protective caps, preventing the ends from being recognized by the DNA damage surveillance pathways. Telomere
shortening is a natural consequence of cell division due to the “end replication problem” whereby lagging strand DNA synthesis cannot be
completed all the way to the very end, and increased cell divisions lead to critically shortened telomeres which elicit DNA damage responses
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essentially irreversible growth arrest. Cells that gain additional oncogenic changes (p53 loss) can bypass senescence and continue to divide until
multiple critically shortened telomeres initiate crisis, a period of increased chromosome end-to-end fusions and extensive cell death. Only a rare
human cell (one in 105 to 107) can engage a mechanism to bypass crisis and become immortal. This is almost universally accomplished by the
upregulation or reactivation of telomerase. A rarer telomerase negative immortalization pathway, termed ALT (alternative lengthening of
telomeres), involves DNA recombination to maintain telomeres
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telomerase holoenzyme [31]. Recent studies have reported
that, in addition to TL maintenance, telomerase is also in-
volved in gene expression regulation, cell proliferation,
apoptosis, WNT/β-catenin signaling, NF-kB signaling,
MYC-driven oncogenesis, DDR, cell adhesion and migra-
tion, and epithelial–mesenchymal transition [32–35]. All
these activities of telomerase are thought to contribute
significantly to the process of oncogenesis.
TL maintenance by telomerase is a complex multistep

process that involves a series of molecular events including
hTERT protein transport and trafficking into the nucleus,
hTR and hTERT assembly with accessory components in
the nucleus, and recruitment to telomeres at the appropri-
ate time during DNA replication. It has been reported that
at least hTERT and hTR are essential for the in vitro reverse
transcriptase activity of the human telomerase enzyme [36].
However, under in vivo conditions the telomerase holoen-
zyme also contains four additional proteins—dyskerin,
NHP2, NOP10 and GAR1 (localization factor)—associated
with the H/ACA class of small nucleolar RNAs that play an
important role in the process of pseudouridylation during
post-transcriptional modification of RNAs. In addition, a
WD-repeat-containing protein 79 called TCAB1 binds to
the CAB-box sequence within hTR and directs the
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telomerase holoenzyme to localize at Cajal bodies bound to
the nucleolus [37]. Numerous additional factors such as the
chaperones HSP90 and p23, as well as the ATPases pontin
and reptin, have also been observed to bind to the two main
subunits of telomerase [38]. Many of these factors are
thought to be involved in the assembly of a functional tel-
omerase holoenzyme in vivo but the actual mechanisms by
which they interact with telomerase remain poorly under-
stood. One working model of human telomerase biogenesis
is that dyskerin, pontin and reptin form a scaffold and cre-
ate an assembly platform for nascent hTR transcripts. Then,
the H/ACA motif-binding complex of dyskerin, NHP2 ribo-
nucleoprotein, NOP10 ribonucleoprotein, a nuclear assem-
bly factor ribonucleoprotein (NAF1) and the telomerase
ribonucleoprotein (RNP) particle associate. Next, hTR
removes NAF1 and attaches GAR1, leading to the forma-
tion of a physiologically stable hTR-H/ACA-RNP complex.
The hTR 3′-hairpin CAB-box sequence recruits TCAB1,
and finally hTERT binds to two structurally independent
hTR domains (CR4/CR5), thus generating the catalytically
active telomerase RNP [39]. TCAB1, found in Cajal bodies,
binds to the CAB box of hTR and guides telomerase to the
Cajal bodies, where it remains localized for most of the cell
cycle, but the physiological significance of this process is
not known.
The recruitment of telomerase to telomeres occurs only

after the replication fork remodels the protected DNA 3′
ends during the S phase of the cell cycle. It involves pro-
tein–protein interactions between the shelterin complex
components TPP1 and POT1 and the DAT (dissociates
the activities of telomerase) domain of hTERT, a region
that differentiates the in vivo functionality of hTERT from
its in vitro activity. TPP1 contains an N-terminal oligo-
nucleotide/oligosaccharide-binding (OB)-fold domain that
includes a patch of amino acids termed the Tel patch,
which directly interacts with the telomerase DAT domain
[40]. It also contains a central domain that directly binds
to POT1 and a C-terminal domain that associates with
TIN2. Thus, interaction between the DAT domain of
hTERT and shelterin components ensures correct posi-
tioning of telomerase at the 3′ end of DNA for synthesis
and processivity of telomeric repeats. Telomerase loading
onto the telomeres is mediated by SRSF11 (a novel TERC-
binding protein), which leads to the stable association of
the enzyme with the telomere overhang, and proper posi-
tioning of the DNA 3′ end at the active site of the enzyme
for nucleotide addition [41] (Fig. 3).

The role of telomerase in cancer: TERT promoter
mutations and telomerase reactivation
Telomerase upregulation or reactivation is a critical
feature in over 90 % of cancers. However, the mecha-
nisms governing hTERT expression in cancer remain
incompletely understood. Therefore, understanding how
hTERT is activated in cancer cells and how it contributes
to further progression of the disease continues to be a
major area of research.
hTERT is a 40 kb gene consisting of 15 introns and 16

exons. It is located on the short arm of human chromo-
some 5 (5p15.33) approximately 1.2 megabases away from
the telomere, embedded in a nuclease-resistant chromatin
domain [42]. The hTERT promoter is GC rich and lacks
both TATA (found in the promoter regions of genes that
encode proteins found in both eukaryotes and prokaryotes)
and CAAT (which rarely occurs in the promoter region of
eukaryotes but is completely absent in prokaryotes) boxes
but contains binding sites for multiple transcription factors,
suggesting that hTERT expression is under multiple levels
of control and may be regulated by different factors in dif-
ferent cellular contexts.
The 260 bp proximal region designated as the hTERT

promoter core is responsible for most of its transcriptional
activity. It contains at least five GC boxes (GGGCGG),
which are binding sites for the zinc finger transcription fac-
tor SP1, and are essential for hTERT promoter activity.
Two E-boxes (5′-CACGTG-3′), located at positions −165
and +44 of the nucleotide sequence of hTERT relative to
the transcription start site (TSS), provide binding sites for
several enhancer binding proteins such as the MYC/MAX/
MXD1 family and USF1/2. The E-boxes are not only im-
portant for hTERT promoter activation by c-MYC, but also
bind to MAD1 and USF1 to mediate hTERT repression.
The hTERT promoter core also contains a single TSS that
binds the multifunctional transcription factor TFII-I. The
transcription of the hTERT promoter is regulated by the ac-
tion of multiple transcription factors and the telomere
chromatin environment. However, it remains unsolved how
the interplay between transcription factors and the telo-
mere chromatin milieu controls hTERT transcription. Sev-
eral transcription factors bind to the hTERT promoter core
to activate or repress hTERT transcription. The transcrip-
tion factors that upregulate transcription include c-MYC,
SP1, E-twenty-six (ETS) family members, NF-kB, AP-2 and
HIF-1. Transcription factors such as p53 (also known as
TP53; represses transcription in an SP1-dependent man-
ner), MAD (transcription factor involved in a network con-
trolling cell cycle progression), WT1, MZF-2, SIP1 and
menin have been shown to downregulate hTERT transcrip-
tion. Most of the transcription factors that upregulate the
telomerase gene are widely expressed and cannot fully
account for high levels of hTERT expression and activation
during tumorigenesis (Fig. 4).
Recent observations of two highly recurrent muta-

tions at two sites within the core promoter region of
hTERT suggest one possible mechanism for the activation
of telomerase in cancer cells. These mutations, which occur
at −124 bp and −146 bp upstream from the ATG start site,
are C T transitions (at positions 1,295,228 (C228T) and
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1,295,250 (C250T) on chromosome 5), and each mutation
generates an identical 11 bp nucleotide stretch (5′-
CCCCTTCCGGG-3′) containing a consensus binding
motif (GGA(A/T)) for ETS transcription factors that can
function as transcriptional repressor, activator or both to
regulate telomerase expression [3, 4]. However, the molecu-
lar mechanisms of telomerase activation by ETS are not
clearly understood. It has recently been reported that epi-
dermal growth factor (EGF)-mediated activation of
telomerase activity in lung cancer is associated with direct
binding of ETS-2 to the hTERT promoter [43]. The recur-
rent hTERT promoter mutations were first reported as
germline mutations from a family of melanoma patients
and were later seen through genome sequencing of spor-
adic melanoma (in >74 % melanomas) and a number of cell
lines across numerous cancer types and were associated
with increased hTERT promoter activity [3, 4]. These muta-
tions occur in approximately 70 % of melanomas, 80–90 %
of glioblastomas, 60 % of hepatocellular carcinomas, 60 %
of bladder cancers, 70 % of basal cell carcinomas, 50 % of
cutaneous squamous cell carcinomas, up to 30 % of thyroid
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vation using the telomere repeat amplification protocol
(TRAP) assay in both xenografts and primary tumor tis-
sues. It is not clear whether the observed enhanced hTERT
transcription and increased level of hTERT mRNA are
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actually related to enhanced telomerase functional enzyme
activity and TL maintenance in tumor cells.
While hTERT promoter mutations are frequent in

multiple non-epithelial cancer types and their distribu-
tion is similar in the majority of patients, Chiba and co-
workers [49] have emphasized that the impact of hTERT
promoter mutations has mostly been studied in already
transformed immortal tumor cells with active telomerase
maintaining their telomeres. The tumor cells without
such mutations also have sufficient telomerase activity to
maintain their telomeres. Therefore, they introduced
three common hTERT promoter mutations (−57 A>C,
−124 C>T, −146 C>T) into isogenic human embryonic
stem cells (hESCs) using CRISPR/Cas9 genome editing,
and observed that in undifferentiated hESCs the pres-
ence of −124 C>T caused a 2- to 3-fold increase in
hTERT mRNA while neither the −57 A>C nor −146
C>T mutation had any effect on hTERT transcription
and none of the three mutations had a major influence
on telomerase activity. However, differentiated hESCs
(fibroblasts) harboring these mutations continued
hTERT transcription (8- to 12-fold increase) relative to
normal hESCs, which would downregulate telomerase
activity. Furthermore, telomerase activity in differenti-
ated fibroblasts carrying hTERT promoter mutations was
comparable to that observed in cancer cell lines. Bell
and colleagues [50] proposed that GA-binding protein
(GABP), an ETS-binding transcription factor, in con-
junction with TERT promoter mutations, drives activa-
tion of hTERT. They have shown that C228T and C250T
transitions are necessary for hTERT promoter activation,
as these generate an ETS motif, which is critically
important for the predominant binding of GABP to acti-
vate aberrant transcription in cancer cells. However, it is
not known whether GABP alone can activate hTERT
promoter transcription or if it interacts with other ETS-
binding transcription factors. Recently, Li and co-
workers [51] have pointed out that hTERT promoter
mutations C228T and C250T are functionally different,
in that the C250T unlike the C228T mutation is regu-
lated by non-canonical NF-kB signaling, which is
required for sustained telomerase activity.
While these non-coding hTERT promoter mutations

are the most frequent promoter mutations in cancer, the
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level and frequency varies with cancer types (Table 1).
Some cancers, such as melanoma, pleomorphic dermal
sarcoma, myxoid liposarcoma, glioma, urothelial cell
carcinoma, carcinoma of the skin and liver cancer, have
the highest frequencies of TERT promoter mutations,
while low frequencies were noted in gastric cancer, pan-
creatic cancer, non-small-cell lung cancer and gastro-
intestinal stromal tumors [6, 45, 48]. One possible
explanation for these observations could be that incipi-
ent cancer cells, originating from rapidly self-renewing
telomerase-competent cells, do not require TERT pro-
moter mutations to regulate TL maintenance. Thus, can-
cers arising from these rapidly proliferating cells tend to
have less frequent hTERT promoter mutations and prob-
ably just stably upregulate enzyme activity that is revers-
ibly regulated in normal cells. By contrast, cancer-
initiating cells originating from cells with low self-
renewing capability may require TERT promoter muta-
tions to overcome the short-telomere-dependent prolif-
erative barrier. However, TERT promoter mutations have
not been detected in prostate cancer, a cancer of low
self-renewing tissue, suggesting that alterations within
the core promoter of the TERT gene do not play an im-
portant role in prostate carcinogenesis [52]. The com-
mon hTERT promoter mutations have been detected
across all stages and grades in most cancers, suggesting
that hTERT mutations are generally an early event in the
process of carcinogenesis [49]. It will be interesting to
determine whether these mutations mostly occur during
Table 1 Frequency spectrum of hTERT promoter mutations
across diverse cancer types

Cancer type Mutation
frequency (%)

Reference

Bladder carcinoma 47–85 [100]

Renal pelvic carcinoma 60–64 [101]

Urothelial carcinoma 47 [102]

Hepatocellular carcinoma 24–59 [6, 103]

Melanoma 67–85 [3]

Skin basal cell carcinoma 39–74 [104]

Thyroid cancer (papillary and
poorly differentiated carcinomas)

50–52 [105]

Myxoid liposarcoma 74–79 [106]

Glioblastoma 28–84 [6, 48]

Medulloblastoma 19–42 [107]

Oligoastrocytoma
Oligodendroglioma

25–53
72

[6, 107]
[44]

Breast cancer, colorectal cancer,
medullary thyroid carcinoma, ovarian
cancer, esophageal adenocarcinoma,
acute myeloid leukemia, chronic lymphoid
leukemia, pancreatic cancer, prostate
cancer, testicular carcinoma, uterine
cervix cancer

0–5 [48, 104]
the period in which cells are undergoing crisis, in order
to establish the role of these mutations as early events in
the process of malignant transformation.
Telomerase expression also involves transcriptional,

post-transcriptional and epigenetic levels of control, which
may occur at any critical steps including transcription,
mRNA splicing, hTR and hTERT synthesis and matur-
ation, structural organization of telomerase RNP, nuclear
localization of telomerase, post-translational modifications,
and recruitment to the telomeres [53]. Epigenetic mecha-
nisms such as chromatin remodeling, DNA methylation
and histone modifications for regulation of hTERT tran-
scription have also been described [54, 55]. The expression
of hTERT is also regulated by post-transcriptional mecha-
nisms. The process of gene transcription leads to the gen-
eration of transcripts (sequence of pre-mRNA produced
by transcription) that are further modified into transla-
tional forms by several processes such as mRNA capping
(5′-cap), 3′-polyadenylation and alternative splicing. Alter-
native splicing of hTERT mRNA has been shown to be a
key post-transcriptional regulatory mechanism [56] but it
remains unclear whether telomerase activity is directly as-
sociated with hTERT splicing.

Telomerase as a target for anticancer therapeutics
Telomerase has been a prime target for the development of
effective therapeutics against cancer as it is expressed in
the majority of cancer types as well as in cancer stem or
stem-like cells. In addition, normal human cells including
stem cells have lower telomerase activity and generally
maintain telomeres at longer lengths compared to cancer
cells. These features provide an advantage that ensures
minimum risk for possible telomere shortening in normal
cells. The main objective of anti-telomerase therapeutics is
to selectively induce apoptosis and cell death in cancer cells
while minimizing the effects on normal cells [57]. Multiple
approaches have been adopted to achieve this goal through
the development of vaccines, antisense oligonucleotides,
and small-molecule inhibitors targeting hTERT or hTR. Al-
though the oligonucleotide imetelstat (GRN163L) appears
to be the most promising telomerase inhibitor, Bryan and
colleagues [58] have reported a novel telomerase inhibitor,
BIBR1532, that binds to the thumb domain of TERT, dis-
rupting TERT–RNA binding (telomerase ribonucleopro-
tein assembly), leading to the inhibition of enzyme activity.
However, this compound has not yet progressed to clinical
trials. Additionally, development of G-quadruplex stabi-
lizers, tankyrase (which has an important role in telomere
homeostasis, mitotic spindle formation and WNT/β-ca-
tenin signaling) inhibitors and HSP90 (involved in signal
transduction, intracellular transport and protein degrad-
ation) inhibitors targeting telomere and telomerase assem-
bly, and T-oligo (DNA oligonucleotide homologous to the
telomere 3′ overhang region, which causes cytotoxic effects
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by inducing DDR) have also been explored to selectively
kill cancer cells [59]. In addition, immunotherapies that use
dendritic cells (GRVAC1), hTERT peptide (GV1001) or
cryptic peptides (Vx-001) are being tested in clinical trials.
Several anti-telomerase agents (imetelstat and vaccines) are
currently undergoing different phases of clinical trials but
imetelstat is the only anti-telomerase compound that has
been extensively evaluated in clinical trials. Recently, the
US Food and Drug Administration (FDA) removed a long-
standing clinical hold on imetelstat and it is expected to
complete planned clinical trials (Table 2).

Developmental highlights of oligonucleotide
inhibitor imetelstat
Imetelstat is a competitive inhibitor of telomerase activity,
and was developed for the intravenous treatment of
various cancers. It consists of a 13-mer N3′–P5′ thio-
phosphoramidate oligonucleotide that is covalently
attached to a palmitoyl (C16 lipid) moiety through a 5′-
thio-phosphate group (Fig. 5a). The thio-phosphoramidate
backbone of imetelstat is responsible for its outstanding
features such as high aqueous solubility, acid and meta-
bolic stability, resistance to the action of nucleases, and
ability to form RNA duplexes [60]. The lipid moiety of
imetelstat provides high lipophilicity that enhances cellular
uptake, retention and drug efficacy [61]. Imetelstat does
not behave like a typical antisense oligonucleotide as it
does not bind to mRNA to inactivate it; rather its sequence
(5′-palmitate-TAGGGTTAGACAA-NH2-3′) binds to a
complementary 13-nucleotide region of hTR that has high
affinity and specificity at the active site of the telomerase
holoenzyme, thus leading to complete inhibition of
enzyme activity (Fig. 5b).
Imetelstat has been extensively evaluated for its activity

and efficacy against multiple cancer cell lines and in
mouse xenograft models in preclinical studies. Imetelstat
demonstrated potent inhibitory action against telomerase,
causing shortening of telomeres in a large spectrum of
cancer cell lines derived from tumors of the bladder,
breast, lung, liver, prostrate and pancreas [62–64]. In vivo
preclinical studies in mouse models of human tumor xe-
nografts showed that the compound was well tolerated
and highly efficacious in inducing telomerase inhibition,
leading to reduced tumor growth, prevention of metasta-
sis, and sensitization of tumors to standard chemotherapy
[65]. Imetelstat was also found to efficiently prevent glio-
blastoma tumor growth in a xenograft model by crossing
the blood–brain barrier, probably owing to its highly lipo-
philic nature [66]. Additionally, simultaneous suppression
of homologous recombination and telomerase activity in a
mouse model of Barrett’s adenocarcinoma with the com-
bination of nilotinib (tyrosine kinase inhibitor) and imetel-
stat was reported to be more effective compared to either
compound alone [67].
Imetelstat has been undergoing clinical trials for several
years, and while some trials have already been completed,
some were discontinued (breast and lung cancer, lympho-
proliferative disorders and polycythemia vera) because the
US FDA put these on hold due to hematological toxicity,
but a few are still continuing (Table 2). Recent clinical de-
velopment of imetelstat includes two studies, one with pa-
tients with myelofibrosis, referred to as the Initial MF
Study or the IMbark™ study, and one with patients with
myelodysplastic syndrome, called the MDS or IMerge™
study (Table 2). Currently, these studies are recruiting tar-
geted patients at various centers in the USA, Europe and
Asia.

Anti-telomerase immunotherapeutics
Telomerase is an attractive target for the development of
telomerase-based immunotherapy. In cancer cells, the
degradation of telomerase by proteasomes results in the
formation of protein fragments or peptides of telomerase
that are expressed on the tumor cell surface as antigens by
the human leukocyte antigen (HLA) class I pathway [68,
69], and these telomerase antigenic epitopes can be tar-
geted by cytotoxic T cells to destroy the tumor cells [70].
Telomerase-specific epitopes can induce CD4+ or CD8+

cytotoxic T-lymphocyte responses or stimulate antigen-
presenting cells capable of attacking tumors [71] (Fig. 6).
Therefore, the rationale for anti-telomerase immunother-
apy is to sensitize the immune system to tumor cells ex-
pressing hTERT peptides to activate and generate hTERT-
specific CD8+ cells to produce enhanced anti-tumor effects.
Two major strategies have been adopted to develop effect-
ive telomerase-based immunotherapy in cancer: an hTERT
vaccine approach and a dendritic cell approach to prime
antigen-presenting cells ex vivo. Three hTERT vaccines,
GV1001, Vx001 and GRNVAC1, have been used to elicit
anti-telomerase immune responses in cancer patients [72].
GV1001 is a 16-amino-acid, HLA class II-restricted

hTERT peptide that contains amino acid sequence 611–
626 (EAR-PALLTSRLRFIPK) of the hTERT active site
[73]. Granulocyte–monocyte colony-stimulating factor
(GM-CSF) or TLR7 is used as adjuvant to carry GV1001.
The vaccine is endogenously processed to yield a HLA
class I peptide producing both CD4+ and CD8+ responses,
thus evoking strong cytotoxic T-lymphocyte activation
[74]. Another vaccine called Vx001 is a cryptic peptide
(functional peptides hidden in protein structures)-based
vaccine containing hTERT amino acid sequence YLF-
FYRKSV. The vaccine shows high affinity for HLA class I
and has demonstrated a significant immune response rate
in cancer patients [75, 76]. A dendritic-cell-based vaccine,
GRNVAC1, consists of mature autologous dendritic cells
transduced with mRNA encoding hTERT and LAMP1.
LAMP1 guides hTERT to lysosomes, where it is degraded
into small peptides, leading to a polyclonal immune



Table 2 Completed and ongoing clinical trials of imetelstat in cancer patients

Identifier code/
phase

Indication Objective Start/
completion date

Design Results Sponsor

NCT00594126/
phase I

Refractory or relapsed
multiple myeloma

Safety and MTD determination November 2007/
July 2011

3 + 3 cohort; dose
escalation study

DLT: thrombocytopenia, neutropenia,
anemia, aPTT prolongation, fatigue,
nausea, anorexia and dizziness.

Geron

NCT00732056/
phase I

Recurrent or metastatic
breast cancer

Safety, MTD, efficacy in
combination with paclitaxel
and bevacizumab

July 2008/
March 2012

3 + 3 cohort;dose
escalation study

DLT: thrombocytopenia, neutropenia. Geron

NCT00310895/
phase I

Solid tumor malignancies Safety and MTD determination March 2006/
March 2013

3 + 3 cohort;
dose escalation study

DLT: thrombocytopenia, myelosuppression. Geron

NCT 00718601
phase I

Multiple myeloma Safety and MTD determination
in combination with bortezomib
and dexamethasone

July 2008/
October 2011

3 + 3 cohort; dose
escalation study

Results not available in public domain. Geron

NCT00124189/
phase I

Refractory chronic
lymphoproliferative
disease

Safety, tolerability, dose-limiting
toxicities, and MTD

July 2005/
March 2013

Sequential dose cohort,
open label, escalation
trial evaluating one infusion
duration of 2 h; weekly
intravenous infusion

Results not available in public domain. Geron

NCT00510445/
phase I

Metastatic non-small-
cell lung cancer

Safety, DLT, MTD in combination
with a standard paclitaxel/carboplatin
regimen

July 2007/
April 2011

Dose cohorts with a
minimum of 3 patients

Patients on imetelstat with short TL
showed a trend towards longer median
PFS as well as OS. However, imetelstat
treatment in patients with long TL had
no improvement in median PFS or OS.
ADRs: neutropenia and thrombocytopenia.

Geron

NCT01265927/
phase I

HER2+ breast cancer DLT in combination
with trastuzumab

January 2011/
October 2015

Open label, non-
randomized study

Results not available in public domain. Geron

NCT01242930/
phase II

Multiple myeloma Improved outcome in patients
previously treated with imetelstat.

November 2010/
December 2015

Imetelstat 2 h intravenous
Infusion on day 1 and day
8 of a 28-day cycle

Results not available in public domain. Geron

NCT02598661/
phase III
IMerge™

Myelodysplastic syndrome Safety and efficacy November 2015/
May 2019

Randomized, double blind Recruiting participants. Janssen

NCT02426086/
phase II
IMbark study

Myelofibrosis
patients previously
treated with
JAK inhibitor

Safety and efficacy June 2015/
March 2018

Randomized, single-blind,
multicenter

Recruiting participants. Janssen

NCT01243073/
phase II

Essential thrombocythemia Safety and efficacy December 2010/
April 2015

Open label, single group Eighteen patients, all with positive
hematologic response. Positive
molecular response in most patients
with JAK2 V617F mutation. ADRs:
neutropenia, anemia.

Geron

NCT01731951/
phase II

Myelofibrosis Efficacy October 2012/
January 2019

Open label, parallel,
active, not recruiting

Complete or partial remission in 21 %
patients. Bone marrow fibrosis was
reversed in a few patients.

Janssen

ADR adverse drug reaction, aPTT activated partial thromboplastin time, DLT dose-limiting toxicity, MTD maximum tolerated dose, OS overall survival, PFS progression-free survival, TL telomere length
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Fig. 5 Structure and action of imetelstat (GRN163L). a Structure of imetelstat. Imetelstat is a lipid-conjugated 13-mer oligonucleotide sequence
with a thio-phosphoramidate backbone. The oligonucleotide sequence is complementary to the hTR component of telomerase and is responsible
for the inhibitory activity of imetelstat, whereas the thio-phosphoramidate backbone imparts resistance to the action of plasma and cellular nucleases.
b Action of imetelstat. Imetelstat binds to the hTR template region at the hTERT active site with high affinity and blocks its recruitment to telomeric DNA.
Imetelstat is a competitive telomerase template antagonist (not antisense that targets mRNA). Binding of imetelstat to hTR results in telomerase inhibition
leading to progressively shortened telomeres
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response specific to all hTERT epitopes expressed by
patient tumors [77]. GRNVAC1 was found to be well
tolerated with no signs of autoimmunity after three or six
weekly injections and elicited robust immune response in
patients [78]. Currently, all these vaccines (GV1001,
GRNVAC1 and Vx001) are undergoing clinical trials in
cancer patients, and the hTERT-specific immune
responses elicited by these vaccines were found to be well
tolerated in the majority of patients (Table 3).
Clinical trial results have demonstrated that GRNVAC1,

Vx001 and GV1001 are promising telomerase-targeting
vaccines capable of stimulating CD4+ and CD8+ responses
in telomerase-positive tumors, showing minimal effects
on normal cells and no autoimmunity. Large multicenter
studies are required to determine long-term toxicities in
patients. However, at present, it is not certain if any of
these vaccine candidates will progress to registration stud-
ies to get approval for clinical application.
Exploiting telomerase activity to selectively kill
cancer cells
A major challenge for anti-telomerase-directed therapy
is the long lag period required to observe enough TL
attrition to induce cell death. Telomere shortening
requires a series of cell division cycles to become appar-
ent, and treatment may have to be given continuously
for months to induce therapeutically relevant tumor re-
duction effects. During this treatment period, most
tumor cells will continue to grow, which may require
the use of other treatment modalities for successful clin-
ical outcomes. Importantly, with direct telomerase inhib-
itors, if the patient has hematological or any other
toxicities (for example, one concern with imetelstat is
the development of hematological toxicities requiring
drug holidays), then going off treatment for a few weeks
would reverse some of the benefits already obtai-
ned—the decision about treatment termination or
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Fig. 6 Anti-telomerase immunotherapy. Several telomerase-based vaccines have been developed, which sensitize immune cells to cancer cells
expressing hTERT peptides as surface antigens via the human leukocyte antigen (HLA) class I and class II pathways. This results in an expansion of
telomerase-specific CD4+ and CD8+ cytotoxic T lymphocytes (CTLs) in cancer patients leading T cells to target and kill telomerase-positive tumor
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Table 3 Completed and ongoing clinical trials of anti-telomerase vaccines: current status

Identifier code/
phase

Indication Objective Start/completion
date

Results Sponsor/reference

NCT00510133/
GRNVAC1 phase II

Acute myelogenous
leukemia

Efficacy July 2007/August
2014

GRNVAC1 was found
to be safe and well
tolerated.
Positive immune responses
in 55 % of patients.
Toxicity: thrombocytopenia.

Asterias Biotherapeutics
(http://asteriasbiotherapeutics.
com/pipeline/ast-vac1/)

NCT01579188/
GV1001 phase III

Non-small-cell lung
cancer

Efficacy May 2012/
May 2016

Ongoing. Kael-GemVax

NCT00425360/
GV1001 phase III

Metastatic pancreatic
cancer

Efficacy in combination
with chemotherapy

September 2006/
March 2013

Adding GV1001 vaccination
to chemotherapy did not
improve overall survival.

[108]

NCT01935154/
Vx001 phase II

Non-small-cell lung
cancer

Efficacy August 2012/
December 2016

Active. Vaxon Biotech (http://
www.clinicaltrials.gov)
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Box 2. Key outstanding research issues in cancer telomere and telomerase biology

Determining mechanism(s) of escape from crisis: Cells in crisis undergo tremendous genomic instability due to bridge–fusion–

breakage cycles. However, many molecular details remain unclear. What are the molecular features of cells that escape crisis? Do they

have hTERT promoter mutations? Why do incipient cancer cells during crisis acquire stem cell-like properties?

hTERT promoter mutations: Some believe that hTERT promoter mutations drive carcinogenesis, while others believe that promoter

mutations are only permissive for tumor growth maintenance. How these widespread hTERT promoter mutations regulate hTERT

expression during cellular transformation is not fully understood.

Telomerase holoenzyme assembly: Although there has recently been progress on determining the yeast and ciliate telomerase

structure, the processes of assembly and function of telomerase in human cancer cells remain poorly understood.

Recruitment of human telomerase to telomeres in cancer cells: The recruitment of telomerase to telomeres is highly regulated and

occurs only after the replication fork remodels protected DNA 3′ ends during the S phase of the cell cycle. It involves protein–protein

interactions between the shelterin complex components TPP1 and POT1 and the DAT domain of hTERT. TPP1 contains an N-terminal

OB-fold domain containing a patch of amino acids termed the Tel patch that directly

interacts with the telomerase DAT domain [40]. However, the signaling pathways that regulate telomerase recruitment in human

cancer cells are not clearly understood. The telomerase

recruitment process is likely regulated by as yet unknown signaling pathways.

Shelterin protein complex: Emerging evidence suggests a crucial role for shelterin components in cancer progression, but how these

components are regulated during different stages of cancer development is not well understood.

Alternative lengthening of telomeres: Recently, knowledge about ALT has increased significantly. The chromatin remodeling factor

ATRX acts as a suppressor of ALT in normal cells and mutations in ATRX and DAXX contribute to activation of ALT [28, 91]. However,

knockdown of ATRX is not sufficient to trigger the ALT pathway in telomerase-positive cell lines or to directly activate ALT in normal

somatic cells, implying the existence of other necessary contributing factors involved in activation of ALT in cancer cells [92, 93]. Thus,

many key questions remain

unanswered, such as why ALT is more frequent in certain cancer subtypes? How does ATRX/DAXX repress ALT and what is the molecular

basis of its activation in cancer cells with wild-type ATRX/DAXX? What is the function of variant DNA repeats in ALT? How does RAD51

interact with the 5′ overhang of ALT telomeric DNA to facilitate its invasion into homologous DNA, and how are shelterin proteins

organized in ALT telomeres?

Answers to these questions may facilitate development of mechanism-based inhibitors for ALT-positive cancers.
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stopping treatment for a short duration may depend
upon the risk–benefit ratio in terms of efficacy and man-
ifested toxicity.
Therefore, novel fast-acting therapeutic agents that can

inhibit telomerase activity would be highly desirable. One
such strategy is not to target telomerase directly but to
introduce a modified nucleoside into cells so that telomer-
ase would preferentially incorporate it into telomeric DNA.
An altered nucleotide incorporated into telomeres would
not bind to shelterin proteins efficiently and should lead to
telomere dysfunction and rapid cell death. Mender
and colleagues [79] have recently demonstrated that, in
telomerase-positive cells, 6-thio-2′-deoxyguanosine (6-thio-
dG), a nucleoside analogue of 6-thioguanine (an approved
drug), is recognized by telomerase and incorporated into
telomeres. This results in altered telomere organization and
activation of telomere-associated DNA damage signals
called telomere dysfunction-induced foci, and rapid cell
death. The nucleoside analogue 6-thio-dG has been evalu-
ated against cell lines and in vivo. Treatment with 6-thio-
dG resulted in rapid cell death, whereas normal
telomerase-silent (telomerase-negative) human fibroblasts
and normal human colonic epithelial cells were largely un-
affected. In in-vivo studies, 6-thio-dG treatment caused
significant reduction in tumor growth rates and was super-
ior to 6-thioguanine treatment. Additionally, mice treated
with 6-thio-dG at effective doses for a month did not show
any hematological, hepatic or renal side effects. Thus, a
telomerase-mediated telomere-disrupting approach may
provide a safe and efficacious option for the treatment of
cancer [80].

Conclusions and future perspectives
Telomere maintenance has been extensively studied, and
our understanding of the role of telomerase and ALT in
cancer has improved remarkably in recent years. It is
becoming clear how cancer cells regulate different mo-
lecular events involved in telomere maintenance to
expand their proliferative capacity. Recent insights into
the control of telomerase activity at telomeres, through



Box 3. Telomere biology-based potential novel targets
for the development of anticancer agents

Inhibition of the Tel patch to block telomerase recruitment

to telomeres: The “Tel patch”, a specific amino acid sequence

in the OB-fold domain of shelterin complex protein TPP1, is

involved in telomerase binding, recruitment, enzyme processivity

and telomere elongation. Thus, inhibition of telomerase

recruitment may result in cell death [94].

Inhibition of telomerase non-canonical function mediators:

In addition to telomere maintenance, telomerase may also be

involved in other important activities such as regulating gene

expression, mitochondrial activity, cell proliferation, apoptosis,

epithelial–mesenchymal transitions and DNA damage repair.

These non-canonical putative telomerase functions may be

mediated through a network of “feed forward signaling

loops” [95]. Interventions targeting the molecules involved in

non-telomeric functions of telomerase may be a rational approach

for cancer treatment.

Inhibition of TRF1 shelterin protein: TRF1 is overexpressed in

many cancer types and plays a central role in controlling

replication of telomeric DNA. The genetic abrogation of TRF1

leads to a marked reduction in lung carcinoma tumor growth in

the K-RasG12V lung cancer mouse model due to acute telomere

uncapping independent of telomere length [96]. However, it is

not clear what effects targeting shelterin proteins would have

on normal cells.

Inhibition of ATM kinase: The ATM kinase plays a crucial role

in the cellular response to telomere dysfunction-mediated DNA

damage and subsequent repair pathways. ATM has recently

been shown to be required for the addition of telomeric DNA

repeats to telomeres and telomere elongation by telomerase in

human cells. Blocking ATM inhibits telomere elongation and

inhibition of PARP1, which activates ATM and increases telomere

elongation [97]. ATM may regulate telomerase access to telomeres

through interaction with TRF1 [98].

Inhibition of alternative splicing of mRNA of hTERT: The

human TERT gene produces numerous alternatively spliced

variants with a few isoforms capable of producing full-length

catalytically active telomerase. A fuller understanding of the

process of alternative splicing may lead to the development of

molecules to inhibit the generation of full-length telomerase

and be a new approach to telomerase therapy in cancer [56].

Inhibition of TERT RNA-binding domain (tTRBD): TERT

protein binds to the template boundary element of TR (TERC),

crucial for the recognition of the precise telomere sequence to

be reverse transcribed by TERT [99]. This is a potential intervention

target, but this discovery needs to be established in human cells.
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telomerase–shelterin interactions, by regulating telomer-
ase recruitment or productive substrate engagement at
the enzyme active site, have highlighted opportunities for
the development of novel diagnostic tools and effective
anticancer agents. Furthermore, recent knowledge gained
about the mechanisms underlying the non-canonical func-
tions of telomerase has significantly improved our under-
standing of the role of telomerase in cancer progression.
However, further research efforts are needed to obtain an
in-depth understanding of hTERT activation in the initial
stages of carcinogenesis, and the various genetic and epi-
genetic mechanisms involved in its regulation. While the
recurrent hTERT promoter mutations are highly frequent
in many cancers and play a pivotal role in the induction of
telomerase reactivation in cancer cells, much remains to
be learned about the sufficiency or necessity of hTERT
promoter mutations in cancer initiation and progression.
It is still not established whether telomerase expression
has any oncogenic characteristics or is simply required for
the maintenance of sustained tumor growth (that is,
whether it is permissive). Moreover, there are many other
unresolved questions regarding telomeres and telomerase
function that deserve further investigation (Box 2). Al-
though target-based compounds have greatly benefited
patients who have tumors with specific oncogenic muta-
tions, such as EGFR mutation, HER2 amplification, or
mutations resulting in ALK expression or KIT expression,
the vast majority of common tumors remain less respon-
sive to these target-based drugs. Therefore, novel targeted
interventions are required and telomerase inhibition re-
mains a promising strategy for cancer treatment. Recent
advances in telomere biology are beginning to unravel
potential new telomerase targets (Box 3) for the design of
novel molecules targeting the activity of this key enzyme.
Clinical trials with telomerase inhibitors have established

telomerase as a viable target, but the time lag between drug
administration and clinical response is long. Continued
treatment is required for successful clinical outcome, which
may lead to severe toxicity in patients. Therefore, a major
challenge is to develop a telomerase inhibitor that rapidly
kills telomerase-positive tumor cells while sparing normal
telomerase-carrying cells.
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